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A B S T R A C T   

Accurate and efficient automated rice grain classification systems are vital for rice producers, distributors, and 
traders, offering improved quality control, cost optimization, and supply chain management. They also hold the 
potential to aid in the development of rice varieties that are more resistant to disease, pests, and environmental 
stress. While most existing studies in the rice classification domain rely on traditional machine-learning tech
niques that necessitate feature extraction engineering processes, our research explores the effectiveness of novel 
deep-learning models for this task. We evaluated the performance of various contemporary deep-learning 
models, including Residual Network (ResNet), Visual Geometry Group (VGG) network, EfficientNet, and 
MobileNet. These models were tested on a dataset comprising 75,000 images, classified into five different rice 
categories. We assessed each model using established evaluation metrics such as accuracy, F1 score, precision, 
recall, and per-class accuracy. Our findings showed that the EfficientNet-based model delivered the highest 
accuracy (99.67%), while the MobileNet-based model excelled in the speed of classification (2556 s). We 
concluded that, compared to traditional machine learning methods, the models employed in our study are highly 
scalable and capable of managing large volumes of complex data with millions of features and samples.   

1. Introduction 

Rice, one of the world’s most significant agricultural products, is 
crucial for human nutrition, economies, and various industrial sectors 
[1,2]. Classifying rice varieties, an essential part of rice supply man
agement is often time-consuming, energy-intensive, and expensive. With 
over 120,000 rice varieties categorized by the International Rice 
Research Institute (IRRI) based on milling degree, kernel size, starch 
content, and flavour [3], the need for automation in rice grain classifi
cation is evident. Recent advancements in Machine Vision present an 
opportunity for agricultural companies and rice suppliers to utilize this 
technology as an effective solution. Utilizing these innovative methods 
could bring significant advantages to the sector, including improved 
quality control, cost optimization, and streamlined supply chain 
management. 

The combination of image processing and traditional Machine 
Learning (ML) techniques has shown promise in various agricultural 
applications, including disease detection, species classification, and 
quality analysis [4]. However, these techniques can be computationally 
demanding and slow when handling large datasets [5]. Moreover, the 

extraction and selection of appropriate features to construct an efficient 
rice classification system can be laborious and time-consuming, 
requiring considerable human effort. 

On the other hand, cutting-edge Deep Learning (DL) models have 
demonstrated superior performance with complex and large datasets 
across various domains, including maritime, robotic, military, and 
agriculture [6]. These models can learn and extract complex features 
automatically, thereby addressing the shortcomings of traditional ML 
methods. Unlike ML models, DL models can identify abstract patterns in 
data through multiple layers of artificial neural networks, leading to 
more accurate and efficient results. Furthermore, DL models’ high 
adaptability allows them to learn and adjust to new and evolving 
datasets, making them suitable for diverse applications. 

In this study, we explore the potential of these popular DL models for 
the rice classification task, focusing specifically on a dataset with five 
different classes and over 75,000 images. We compare the performance 
of various DL models, including Residual Network (ResNet), Visual 
Geometry Group (VGG) network, EfficientNet, and MobileNet, using 
common metrics such as precision, F1-score, recall, and accuracy. We 
answer this main research question in this paper: Which DL model is 
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most effective in classifying rice, and how does its performance compare 
to others? 

Our paper makes a significant contribution to the field of rice clas
sification using DL models. To the best of our knowledge, this is the first 
study to examine the performance of multiple DL models, including 
ResNet50, ResNet101, VGG16, VGG19 EfficientNet, and MobileNet, on 
this classification task. Through a comprehensive evaluation, we pro
vide insights into these models’ performance and running time, which 
can inform future research in this area. Furthermore, our study con
tributes to advancing the state-of-the-art in rice classification, with im
plications for agricultural productivity, food logistics management, and 
food security. 

The remainder of this paper is organized as follows: Section 2 pre
sents a review of the relevant literature. Section 3 outlines our research 
methodology. The experimental setups like dataset and pre-processing 
have been explained in Section 4. Section 5 presents the results and 
findings of our study. Finally, Section 6 first discusses and compares this 
paper with other work, then summarizes the main findings and our 
methodology’s broader implications. 

2. Related work 

Studies on agricultural product classification, particularly pertaining 
to rice species, have commonly employed image processing techniques 
to extract geometric parameters such as length and perimeter, fracture 
rate, and the presence of cracks in rice grains. The selected features are 
subsequently used to train machine learning (ML) algorithms for the 
classification task. The ML and DL models frequently used in these 
studies include Random Forest (RF), K-Nearest Neighbor (KNN), Multi- 

Layer Perception (MLP), Logistic Regression (LR), Support Vector Ma
chine (SVM), Artificial Neural Network (ANN), Convolutional Neural 
Network (CNN), and Deep Neural Network (DNN). 

In [9], a total of 3810 images of two rice species were analyzed, with 
seven morphological characteristics identified for each grain. These 
features were then used to train models using ML algorithms including 
LR, MLP, SVM, Decision Trees (DT), RF, Naive Bayes (NB), and KNN, 
with performance measurements recorded. Similarly [7], used the same 
75,000-image dataset selected for our study to construct a second 
dataset with 106 features, including 12 morphological, 4 shape, and 90 
colour features. They trained DNN and ANN models using these features 
to classify rice varieties. They also compared these models’ performance 
with a CNN-based classification model trained directly on the images. 

In another study [8], 106 features were extracted from five different 
colour spaces, and ML models such as KNN, DT, LR, MLP, RF, and SVM 
were used for the rice classification task. As traditional ML models may 
struggle with large datasets due to their computational demands and 
slow processing times, some studies have limited their datasets. For 
instance Ref. [9], used a dataset of only 1700 images from two classes to 
identify the location and type of rice chalkiness, while [10] used a 
dataset of 5000 images from three classes to train a DNN architecture for 
improving rice classification accuracy. 

Upon reviewing the literature, it becomes evident that the majority 
of studies have employed traditional ML methods that necessitate 
feature extraction. While these methods have demonstrated effective
ness, the laborious and time-consuming process of feature extraction can 
limit the scalability of these models, especially with large, high- 
dimensional datasets. DL models, in contrast, provide an alternative 
that negates the need for feature extraction. These models can learn 
directly from raw data, simplifying the classification process and 
reducing computational costs. 

3. Methodology 

This section provides a detailed description of the experimental 
design, including the dataset and evaluation metrics. Moreover, we also 
briefly described the DL models and their architecture used in this study 
separately. A schematic representation of the entire methodology is 
provided in Fig. 1, which illustrates the flow of operations. It begins with 
the acquisition of the rice grain image dataset, followed by data pre
processing. Then, the preprocessed data is fed into the deep learning 
models, namely ResNet, VGG network, MobileNet, and EfficientNet, for 
training. Upon model training, the evaluation of their performance is 
carried out using several metrics such as accuracy, precision, recall, and 
F1-score. 

3.1. Review of deep-learning models 

The following subsections provide an exhaustive exploration of the 
deep learning architectures utilized in our study. These models include 
ResNets, VGG Network, EfficientNet, and MobileNet. 

Residual Network (ResNet): ResNet, a variant of supervised, feed- 
forward deep neural networks, introduces a novel paradigm wherein 
each layer learns a transformation in reference to the layer’s input, as 
opposed to learning independent mappings [12]. This architecture en
ables the training of exceptionally deep neural networks with reduced 
training error. Notably, ResNet’s design effectively mitigates the van
ishing gradient problem [13], a common issue faced during the training 
of deep networks using gradient-based learning methods. A standard 
ResNet block, as shown in Fig. 2, comprises two convolutional layers, 
integrating the input with the residual function’s output for subsequent 
use in the following blocks. 

Visual Geometry Group (VGG) Network: The VGG network illus
trated in Fig. 3, originating from the Visual Geometry Group at Oxford 
University, is acclaimed for its simplicity and efficiency [14]. It pri
marily employs a series of 3x3 convolutional layers stacked in increasing 

Fig. 1. Flowchart illustrating the methodology used in this study, which starts 
from the pre-processing step, and splitting data into train and test datasets to 
model training and evaluation process. 
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depth, reducing the number of parameters while allowing for the 
extraction of more complex features. 

MobileNet: Designed for mobile and embedded vision applications, 
MobileNet, a suite of Convolutional Neural Networks (CNNs), is apt for 
various computer vision tasks, including object and face detection, along 
with logo or text recognition [15]. MobileNet stands out for its 
compactness, owing to fewer parameters, making it suitable for mobile 
applications. It is less complex compared to other models and requires 
fewer computational operations, leading to improved accuracy, 
decreased memory consumption, and reduced computational time [16]. 
A feature of MobileNet is its use of depthwise separable convolutions, 
leading to a significant reduction in the model’s parameter count [16]. 
These convolutions involve a two-step process of filtering and combi
nation, distinguishing MobileNet from conventional CNNs (Fig. 4). 

EfficientNet: Scaling up a convolutional network is a common 
strategy to enhance accuracy on benchmark datasets. However, the 
traditional approaches, such as width-wise, depth-wise, and image res
olution techniques, usually require careful manual tuning and are time- 
intensive. EfficientNet [16], designed as a systematic solution to this 
challenge, enables effective scaling of CNN models. Through 

comprehensive evaluation of different scaling methods [17], Effi
cientNet demonstrates that balancing the three dimensions-width, 
depth, and image resolution-with a set of coefficients can improve the 
model’s performance, as illustrated in Fig. 5. 

Fig. 2. A block of a ResNet model.  

Fig. 3. Architecture of the VGG model.  

Fig. 4. (a) Standard convolution network (b) Depth-wise separable convolution 
with depth-wise and pointwise layers. 
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4. Experimental setup 

4.1. Dataset 

The dataset employed in this study comprises images of five distinct 
varieties of rice commonly cultivated in Turkey: Arborio, Basmati, 
Ipsala, Jasmine, and Karacadag [11]. It includes a total of 75,000 rice 
grain images, with each variety represented by 15,000 images. These 
images are in RGB format and boast a resolution of 250 x 250 pixels, 
each capturing a single grain of rice. This dataset was chosen due to its 
comprehensive representation of rice varieties commonly found in the 
Turkish agricultural sector, offering a practical context to evaluate the 
performance of DL models. Furthermore, the large volume of images and 
the diversity of rice types provide a challenging environment for DL 
models, facilitating a rigorous comparison of their performance. Fig. 6 
provides some examples of each rice grain class from the dataset. 

4.2. Pre-processing 

Pre-processing is a vital step in image analysis as it can significantly 
enhance image quality, thereby improving the robustness and perfor
mance of the subsequent classification task. For this study, we employed 
one ubiquitous technique in image pre-processing: contrast 

enhancement. It is utilized to increase the discernibility of the details in 
the image by amplifying the difference in intensity between lighter and 
darker areas. This technique enhances the definition and clarity of the 
image, thereby making it easier for the model to identify and learn the 
intricate differences between various rice varieties. By implementing the 
pre-processing technique, we have been able to ensure that the deep 
learning models employed in this study are provided with high-quality, 
meaningful data, which in turn leads to more accurate and reliable 
classification results. 

4.3. Implementation details 

The implementation of this study was carried out using the Keras 
library in a Python environment. Computations were performed on a 
platform equipped with an 11th Generation Intel Core i7-11800H and an 
NVIDIA GeForce RTX 3050 Ti with 4 GB of GDDR6 memory. For the 
training of deep learning models, the Adam optimizer [19] was utilized, 
with a fixed learning rate of 0.0001. The models were trained in 
mini-batches, each consisting of 16 images, over the course of 100 
epochs. During this training process, strategies such as early stopping 
and model checkpointing were employed to prevent overfitting and to 
save the most effective model, respectively. The available dataset was 
divided in such a way that 80% of it was dedicated to training and the 
remaining 20% was used for testing, thereby ensuring that the perfor
mance of the models was evaluated on unseen data. 

4.4. Evaluation metrics 

The performance of the classification models in this study has been 
evaluated using four common metrics, which are detailed below. 

● Accuracy: This metric quantifies the proportion of correct pre
dictions made by the model across all classes. It is calculated by 
dividing the number of correct predictions by the total number of 
predictions. The range of accuracy is between 0 and 1, with a score of 
1 representing perfect prediction accuracy. Accuracy is calculated 
using the following formula: 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

where TP, TN, FP, and FN are the number of true positives, true nega
tives, false positives, and false negatives, respectively. 

Fig. 5. Compound scaling technology in EffiecientNet model [18].  

Fig. 6. Example of rice grain classes: (a) Arborio (b) Basmati (c) Ipsala (d) Jasmine (e) Karacadag.  

Table 1 
Model parameters and time.  

Model Time Trainable 

VGG16 7857 s 6,456,325 
VGG19 9358 s 6,456,325 
ResNet50 5902 s 25,723,909 
ResNet101 9803 s 25,723,909 
EfficientNet 4304 s 4,049,571 
MobileNet 2556 s 12,878,853  
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● Precision: Precision measures the ratio of true positive predictions 
(correctly predicted positive instances) to the sum of true positives 
and false positives (all instances predicted as positive). A perfect 
precision score of 1 indicates that the model has a low false-positive 
rate. The formula for precision is as follows: 

Precision =
TP

TP + FP
(2)  

where TP and FP are the numbers of true positives and false positives, 
respectively.  

● Recall: Also known as sensitivity or the true positive rate, recall 
calculates the proportion of true positive predictions out of the total 
actual positive instances. A recall score close to 1 signifies that the 
model has a low false-negative rate. Recall metric is calculated using 
the formula 3: 

Recall =
TP

TP + FN
(3)  

where TP and FN are the numbers of true positives and false negatives, 
respectively.  

● F1-score: This metric combines precision and recall into a singular 
measure, providing a balanced assessment of these two metrics. Also 
known as the harmonic mean of precision and recall, the F1-score 
ranges from 0 to 1, with 1 being the optimal value. It effectively 
represents the trade-off between precision and recall. This metric is 
calculated using the following formula: 

F1 = 2 ×
Precision × Recall
Precision + Recall

(4)  

where Precision and Recall are as defined above. 

● Per-class Accuracy (PA): It calculates the accuracy for each indi
vidual class separately. This is done by dividing the number of 
correctly classified instances of a particular class by the total number 
of instances of that class. Furthermore, it is often used in multi-class 
classification problems, and it ranges between 0 and 1. In mathe
matical terms, for a given class ‘i’, the per-class accuracy can be 
calculated as follows: 

PAi = (TPi)/(TPi +FNi) (5)  

where: TPi is the number of true positives for class ‘i’, and FNi is the 
number of false negatives for class ‘i’. 

Although accuracy provides an overall measure of model perfor
mance, it can be misleading when dealing with imbalanced classes. 
Therefore, we also consider precision, which provides insight into the 
rate of false-positive errors, and recall, which indicates the rate of false- 
negative errors. These metrics are particularly important in our study, 
where missing a particular rice class (false negative) or misclassifying a 
rice class (false positive) could have significant implications. The F1 
score offers a balance between precision and recall and is particularly 
useful when the cost of false positives and false negatives are very 
different. In our case, it would signify the trade-off between mis
classifying a rice variety and missing a rice variety. 

5. Experimental results 

5.1. Running time vs performance 

The experiment results pertaining to the running times and perfor
mance of various deep learning models are summarized in Table 1 and 
Table 2, respectively. These tables collectively provide a comprehensive 
evaluation of the models’ capabilities in terms of their classification 
accuracy, precision, recall, F1 score, per-class accuracy, training times, 
and trainable parameters. 

From a computational standpoint, as summarized in Table 1, Mobi
leNet demonstrated the fastest training time among the evaluated 
models. This suggests that MobileNet provides a balance between 
computational efficiency and model performance, making it an attrac
tive choice for applications where computational resources or training 
time may be a limiting factor. However, as indicated by its slightly lower 
precision and recall scores, this increased speed may come at the cost of 
a small compromise in model performance. 

As demonstrated in Table 2, EfficientNet emerged as the top- 
performing model in terms of overall accuracy and F1 score. This 

Fig. 8. Testing loss and accuracy over 100 epochs for all models.  

Table 2 
Model performance based on evaluation metric.  

Model Accuracy F1-score Precision Recall Per-Class Accuracy 

Arborio Basmati Jasmine Ipsala Karacadag 

VGG16 99.53 0.9953 0.99 0.99 99.5 99.53 99.43 99.66 99.53 
VGG19 99.57 0.9957 0.99 0.99 99.53 99.53 99.56 99.7 99.53 
ResNet50 99.53 0.9953 0.99 0.99 99.23 99.6 99.5 99.76 99.56 
ResNet101 99.51 0.9951 0.99 0.99 99.3 99.43 99.43 99.83 99.56 
EfficientNetB0 99.67 0.99673 0.99 0.99 99 99.8 99.76 99.93 99.86 
MobileNet 98.86 0.9886 0.98 0.98 98 98.8 99.06 99.63 99.8  

Fig. 7. Training loss and accuracy over 100 epochs for all models.  
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indicates that EfficientNet outperformed the other models in both 
correctly classifying the rice grain images and in providing a balance 
between precision and recall. Interestingly, all models, with the excep
tion of MobileNet, achieved a high score of 0.99 for both precision and 
recall, suggesting that these models were highly effective in correctly 
identifying the rice classes with minimal false positives and negatives. 
The per-class accuracy sub-columns in Table 2 offer a more detailed 
analysis of the models’ performance at the level of individual rice 
classes. VGG19 proved to be the best model for classifying the Arborio 
rice class. However, EfficientNet was superior in classifying the Basmati, 
Jasmine, Ipsala, and Karacadag rice classes, further reinforcing its status 
as the top-performing model. 

As depicted in Figs. 7 and 8, the evolution of training and testing 
accuracy and loss over 100 epochs for all models is exhibited. It is 
apparent from Figs. 7 and 8 that most of the models achieve peak ac
curacy concurrently with a minimized loss on both the training and 
testing datasets at around epoch 40. This observation signifies that the 
models are capable of efficiently learning the feature representations 
from the dataset within this number of iterations, and further training 
beyond this point does not notably improve their performance. 

5.2. Confusion matrix 

The confusion matrix is utilized in this study as an additional per
formance evaluation tool, allowing for a detailed analysis of the tested 
models’ performance in the rice grain classification task. The metrics 
derived from the confusion matrix include True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN). As 
depicted in Fig. 9, all models exhibit robust performance in accurately 
predicting the labels, with minimal errors reported. For instance, the 
MobileNet model has 53 instances and the EfficientNet model has 24 
instances where the Arborio class has been incorrectly predicted as the 
Karacadag class. This analytical approach allows for an intricate un
derstanding of where the models may struggle, thus providing insights 
into potential areas of improvement. 

5.3. Qualitative results 

In order to substantiate our quantitative findings, we conducted a 

Fig. 9. Confusion matrix for all models.  

Fig. 11. Qualitative analysis of all DL models for Karacadag rice class.  

Fig. 10. Qualitative analysis of all DL models for Jasmine rice class.  
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Fig. 12. Misclassification examples for (a) ResNet50 (b) VGG16 and (c) MovbileNet.  
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Fig. 13. Misclassification examples for (a) ResNet101 (b) VGG19 and (c) EfficientNet.  
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qualitative analysis aimed at providing a more granular understanding 
of the performance exhibited by the DL models in the rice classification 
task. This exercise necessitated a detailed examination of the model’s 
ability to predict the correct class of individual test images. We selected 
two test images, each representing a different rice variety: Jasmine and 
Karacadag. These images were then individually fed into the trained DL 
models, which subsequently generated probability prediction scores. 
Each score represents the model’s certainty or confidence in predicting 
that the image belongs to a specific rice variety. The probability pre
diction scores of the Jasmine and Karacadag rice images are presented in 
Figs. 10 and 11 respectively. In these figures, the x-axis denotes the 
probability score, ranging from 0 to 1, while the y-axis represents the 
type of DL model. Each line on the graph corresponds to a different 
model and its prediction for the given rice variety. A close inspection of 
the charts reveals that all models demonstrate high confidence in their 
predictions, providing probability scores that are proximate to 1.0 for 
the correct class of rice species. This is consistent for both the Jasmine 
and Karacadag varieties, which validates the robustness of the models 
across different rice classes. 

In an effort to highlight instances of incorrect class prediction by the 
models, we have assembled a selection of misclassification examples 
encountered during the training of the models. Figs. 12 and 13 were 
constructed to illustrate some of the misjudgments made by the models. 
Each figure comprises three rows dedicated to different types of cases for 
each model: the first row illustrates true positive cases, the second 
presents false positive cases, and the third exhibits false negative cases. 
Taking for example, VGG16 and VGG19, it can be observed that these 
models do not manifest any false negative errors for the Ipsala rice type, 
as validated by the confusion matrix depicted in Fig. 9. Nevertheless, it 
must be noted that other models did demonstrate at least one error when 
evaluated against the test dataset. 

6. Discussion and conclusion 

In the present research, we explore the robust capabilities of 
advanced deep learning models, namely VGG16, VGG19, ResNet50, 
ResNet101, EfficientNet, and MobileNet, for their classification poten
tial across five distinctive rice varieties. This exploration is facilitated 
through experiments conducted on a comprehensive dataset, encom
passing 75,000 images of rice grains. To underscore the superiority of DL 
models, we draw a comparative analysis with preceding studies that 
have relied on traditional machine learning models or novel techniques 
in machine learning and deep learning like transfer learning. The first 
work selected for comparison is Cinar et al. [11]. The researchers uti
lized a relatively smaller subset from the same dataset for feature 
extraction. This served as a basis for the development of models using 
traditional machine learning techniques including LR, MLP, SVM, DT, 
RF, NB, and k-NN. Their highest-performing model was based on Lo
gistic Regression, which achieved an accuracy of 93.02%, a figure that 
pales compared to the performance exhibited by our deep learning 
models. 

The results garnered from our study significantly underscore the 
efficacy of the deployed deep learning models. These models, by virtue 
of processing the entire dataset and eliminating the necessity for feature 
engineering, demonstrate notable advantages over their traditional 
counterparts. These attributes can be attributed to their superior 

performance metrics. The empirical evidence gleaned from our study 
reinforces the idea that deep learning models provide highly effective 
solutions for classification tasks, particularly in sectors such as agricul
tural image analysis, where datasets are often large and intricate. 

The second comparison is drawn from a study that focused on clas
sification tasks using the same rice dataset [20]. The methodology 
outlined in the aforementioned study revolved around the principles of 
transfer learning, albeit with a distinctive twist. Traditionally, transfer 
learning, which capitalizes on the pre-existing knowledge of models 
trained on extensive datasets such as ImageNet, offers a promising 
avenue for achieving computational efficiency and superior perfor
mance on domain-specific tasks. However, the methodology under 
comparison diverged from this norm, employing the AlexNet architec
ture, trained afresh on the rice dataset, and subsequently extracting 
features from its fully connected (FC)layers (FC6, FC7, FC8) for Support 
Vector Machine (SVM)-based classification. 

In replicating this approach, our results revealed accuracies of 
96.99% for the AlexNet, and between 96.88% and 96.94% for the 
feature extraction scenarios (FC6, FC7, FC8). A review of the per-class 
accuracies further underscores the consistency in performance across 
the rice varieties. For instance, the AlexNet exhibited accuracies of 
96.17% for Arborio, 97.30% for Basmati, 95.25% for Jasmine, 98.74% 
for Ipsala, and 97.49% for Karacadag. Similar figures, with slight vari
ations, were observed for the feature extraction scenarios. The details of 
the obtained result are mentioned in Table 3. While these figures are 
commendable, they fall short when juxtaposed against the performance 
metrics achieved by our deep learning models, with the best model 
boasting an accuracy of 99.87. Furthermore, the methodological choice 
of training AlexNet from scratch and then harnessing its layers for 
feature extraction, rather than capitalizing on a pre-trained model, rai
ses questions on the optimal utilization of transfer learning’s potential. 

However, it is crucial to recognize the limitations inherent in this 
study. Despite our promising outcomes, the results were derived under 
specific conditions. These conditions encompass the employment of a set 
learning rate and certain architectural decisions for the deep learning 
models. Our experiments utilized a single dataset, and although it was 
comprehensive, results might differ with data from different sources or 
with varied image quality. Additionally, the performance of the models 
might be sensitive to hyper-parameters, and the ones chosen for this 
study, although effective, might not be universally optimal. Variations 
in performance might also arise when different pre-processing methods 
or data augmentation techniques are introduced. It’s also worth noting 
that while our models performed admirably, they haven’t been tested 
against adversarial attacks or evaluated for robustness in scenarios with 
noisy data. 

Looking forward, our research aspirations encompass the expansion 
of our methodologies to cater to other agricultural commodities and 
more intricate classification challenges. Although we’ve touched upon 
the capabilities of transfer learning in this study, other facets, such as 
domain adaptation or semi-supervised learning, might provide avenues 
for further enhancements in model performance. In essence, this 
investigation underscores the profound potential of deep learning 
models within agricultural image analysis, setting the stage for more 
sophisticated and efficacious endeavors. 

Table 3 
Model performance based on evaluation metric.  

Scenario Accuracy F1-score Precision Recall Per-Class Accuracy 

Arborio Basmati Jasmine Ipsala Karacadag 

AlexNet 0.9699 0.9699 0.9699 0.9699 0.9617 0.9730 0.9525 0.9874 0.9749 
FC6 0.9688 0.9688 0.9689 0.9688 0.9592 0.9580 0.9613 0.9893 0.9761 
FC7 0.9694 0.9694 0.9694 0.9694 0.9599 0.9687 0.9563 0.9893 0.9730 
FC8 0.9694 0.9694 0.9694 0.9694 0.9599 0.9687 0.9563 0.9893 0.9730  
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