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ARTICLE INFO ABSTRACT
Keywords: Effective Mineral Prospectivity Mapping (MPM) relies on the ability of Machine Learning (ML) models to
Mineral prospectivity mapping extract meaningful patterns from geophysical data. However, in mineral exploration, identifying the presence

Imbalanced data
Random forest
Multi-perceptron

of mineral deposits is often a rare event compared with the overall geological landscape. This rarity leads
to a highly imbalanced dataset, where positive instances (mineralized samples) are considerably less frequent
Logistic regression than negative instances (non-mineralized samples). Imbalanced data can potentially bias ML models towards
Decision tree the majority class, leading to inaccurate predictions for the minority class (mineralized samples) which are of
EIS toolkit primary interest. To address this challenge, we proposed two-level methods in this study. At the data level,
we employed imbalanced data handling techniques that operate on the training dataset and change the class
distribution. At the algorithmic level, we adjusted the decision threshold of a model to balance the trade-
off between false positives and false negatives. Experimental results are collected on a geophysical data from
Lapland, Finland. The dataset exhibits a significant class imbalance, comprising 17 positive samples contrasted
with 1.84 x 10° negative samples. We investigate the effect of handling imbalanced data on the performance of
four ML models including Multi-Layer Perceptron (MLP), Random Forest (RF), Decision Tree (DT), and Logistic
Regression (LR). From the results, we found that the MLP model achieved the best overall performance, with
total accuracy of 97.13% on balanced data using synthetic minority oversampling method. Random forest and
DT also performed well, with accuracies of 88.34% and 89.35%, respectively. The implemented methodology
of this work is integrated in QGIS as a new toolkit which is called EIS Toolkit' for MPM.
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1. Introduction

Mineral Prospectivity Mapping (MPM) aims to predict the likelihood
of finding specific types of mineral deposits for mineral exploration,
and resource assessment. Traditionally, MPM can be carried out by
analyzing geophysical, geochemical, and spatial datasets to create maps
highlighting areas with a higher potential for hosting particular mineral
resources (Zuo, 2020; Chudasama et al., 2022). Over the past decade,
Machine Learning (ML) methods have demonstrated their ability to
improve the accuracy of MPM models, leading to more efficient and
effective mineral exploration strategies (Brandmeier et al., 2019; Sun
et al.,, 2020). In addition, they outperform the traditional statistical
techniques and empirical explorative models in mineral prospectivity
prediction, particularly when the input data is complex and its rela-
tionship with mineralization is nonlinear (Zhang et al., 2018, 2015;
Carranza and Laborte, 2015). Some of the most commonly used ML
methods include Random Forest (RF), Support Vector Machine (SVM),
Logistic Regression (LR), Boosting algorithms, and Artificial Neural Net-
work (ANN) (Chudasama et al., 2022; Sun et al., 2020; Jung and Choi,
2021). However, the supervised ML algorithms require an appropriate
and representative labeled dataset for training in order to identify
patterns and relationships that can be used to predict the likelihood
of mineralization efficiently.

Creating labeled data is usually expensive, resource-intensive, and
time-consuming in numerous real-world applications, especially in do-
mains like geophysics, geochemistry, and mineral exploration. In these
fields, the problem is exacerbated by at least two major factors. Firstly,
rock samples, usually gathered from boreholes, are the most precise
geological data type, which allow for determining the exact chemical
composition of the sample. However, drilling is prohibitively expensive,
and can often only be used to confirm a potential mineral deposit.
Secondly, mineralization is rare and happens in only spatially very
constrained locations (Cheng, 2007). Therefore, these challenges lead
to a highly imbalanced dataset characterized by a scarcity of known
mineralized regions and a vast majority of non-mineralized locations.
Scarcity of well-known locations makes it challenging to use deep
machine learning approaches in these domains, as they tend to perform
better with large amounts of data. In addition, training classical ML
models on imbalanced datasets often tend to be biased towards the ma-
jority class, leading to poor generalization (Yadav and Bhole, 2020; Zou
et al., 2016). As a result, models shows good accuracy on the majority
class but poor accuracy on the minority class. However, high accuracy
is crucial in MPM due to high costs associated with misclassifications,
especially false positives (Xiong and Zuo, 2017).

The problem of imbalance has garnered significant attention in
recent years (Yadav and Bhole, 2020; Spelmen and Porkodi, 2018;
Prado et al.,, 2020; Ferreira da Silva et al., 2022). Generally, the
imbalanced handling techniques can be divided into three main groups:
(1) algorithm level, (2) data level and (3) hybrid methods (Yadav and
Bhole, 2020). Data level methods aim to balance the data by adding
more samples of the minority class such as over-sampling (Chawla

et al., 2002) and under-sampling (Kotsiantis et al., 2006). For instance,
in Prado et al. (2020) they used an over-sampling technique (SMOTE)
to generate balanced data for modeling of Cu-Au prospectivity. Al-
gorithm level approaches incorporate misclassification costs into the
training process. It means higher costs are assigned to misclassifications
of the minority class, reflecting the greater importance of correctly
identifying these rare instances. Hybrid methods integrate data and
algorithm level advantages.

Another approach for improving the ML model’s performance of
imbalanced datasets is thresholding (Buda et al., 2018). The model
might consistently predict high probabilities for the majority class, even
for borderline cases that should belong to the minority class. To address
this problem, a decision threshold can be adjusted on the predicted
probabilities of the minority class and classifying data points as belong-
ing to the minority class only if the predicted probability exceeds the
threshold. In this way, we can focus on identifying the minority class
more accurately and control the balance between false positives and
false negatives, thus potentially improving the model’s performance on
imbalanced datasets. In Xiong and Zuo (2018), authors proposed a rare
event LR algorithm, which embeds sampling and decision threshold
corrections into the original LR algorithm.

In this work, we address the mentioned challenges for develop-
ing ML models in a highly imbalanced distribution dataset in MPM.
ML algorithms include Decision Tree (DT), RF, LR, and Multi-Layer
Perceptron (MLP). The prediction results of models are ultimately
determined according to prediction probabilities. In most classifiers,
the default threshold is 0.5. However, this threshold does not work
well for imbalanced classification prediction. For these reasons, we
implement a nested cross-validation approach. Initially, we use Leave-
One-Out Cross Validation (LOOCV) for reporting performance metrics.
Within each LOOCYV training fold, we further conduct a 4-fold Stratified
Cross Validation (SCV) to optimize key parameters including oversam-
pling, undersampling, decision threshold, and model hyperparameters.
We chose a 4-fold approach as it provided the maximum fold size
while maintaining a sufficient number of positive cases for effective
evaluation, even with various levels of over and under sampling.

We evaluated the effectiveness of the imbalanced handling tech-
niques on the performance of ML algorithms for MPM using a case
study of mineralization in Lapland, Finland. In our highly imbalanced
dataset, there are only 17 samples confirmed to contain mineralized
samples, compared to approximately 1.84 x 10® samples that may or
may not contain mineral deposits. For simplicity, we will use the term
‘non-mineralized samples’ throughout this paper.

The results show that balancing the data is the most effective for
improving the performance of ML algorithms for MPM. We believe that
our findings have important implications for the development of more
accurate and efficient ML-based MPM models. When it comes to the
quality of the positive samples, it seems that each and every sample
is useful, and that for this particular problem more positive samples
would be helpful. Based on our knowledge, there is no published
research that uses data balancing techniques with decision threshold
optimization for improving ML algorithms in MPM such as this study.
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Fig. 1. (a) The generalized geology and location of the study area (b) The study area is located at western Finnish Lapland.

Table 1
Data Description.

Data Type Used features Count of Features
AEM Aeroelectromagnetic Inphase and Quadrature components, Apparent 4
resistivity, and electromagnetic ratio
Magnetic DGRF65 Anomaly: Analytical Signal of magnetic anomaly; 12
Directional cosines of magnetic anomaly in directions 45, 90, 135,
and 180 degrees; X, Y, Z, Horizontal derivative of the tilt derivative
and tilt derivative of the magnetic field, Pseudogravity derived from
magnetism
Radiometric Gamma ray radioactivity of elements K, U, and Th and total 4
Gamma ray radioactivity
Total 20

Existing GIS tools often lack built-in ML models capable of handling
imbalanced data specific to MPM. This work addresses this gap by
introducing a novel methodology tailored for MPM tasks. The designed
methodology is integrated into a popular GIS tool like QGIS as a
part of a Horizon European project which is called Exploration Infor-
mation System (EIS). However, this paper focuses on describing the
methodology rather than the toolkit design.

The remainder of this paper is organized as follows. We describe
the study areas and data in Section 2. The proposed methods for
handling imbalanced data are described in Section 3.1. The evaluated
ML methods are discussed in Section 3.2. Sections 4 and 5 provides
the experimental design and results, respectively. The discussion and
conclusions are drawn in Section 6.

2. Study area and dataset

Our study area is located in municipalities of Kittild, Kolari, and
Muonio, Lapland, Finland (Fig. 1). The study area contains 17 known
Iron oxide—copper—gold (IOCG) deposits, which are mostly situated at
faults that cross the boundary between synorogenic monzonite and its

country rock (Niiranen, 2005). The occurrence data is from mineral
deposit database of Geological Survey of Finland (GTK).?

Geophysical data serves as a valuable tool for MPM, aiding in the
mapping of subsurface features and enhancing comprehension of the
geological structure within a search area, particularly when surface
outcrop is limited (Kreuzer et al.,, 2020). For this reason, we used
different geophysical datasets used in the study which were all provided
by the GTK.® A summary of the used data for this study is provided in
Table 1. All the used raster data originate from aerogeophysical low
altitude surveys conducted by GTK between 1972-2007. All rasters
have 50 x 50 m? spatial resolution. Totally, we have three type of data
as follow:

+ Airborne Electromagnetic (AEM) includes measurements of the
electrical conductivity of the earth’s subsurface.* The predictor
maps of these features are shown in Appendix A (Fig. A.11).

2 https://tupa.gtk.fi/paikkatieto/meta/mineral_deposits.html

3 https://www.gtk.fi/

4 https://tupa.gtk.fi/paikkatieto/meta/aeroelectromagnetic_raster_data_of_
finland.html
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Fig. 2. Workflow.

» Magnetic data used to identify variations in the Earth’s magnetic
field caused by the magnetic properties of subsurface rocks.®
The predictor maps of these features are shown in Appendix A
(Fig. A.12, A.13 and A.14).

» Radiometric data gives the measurement of natural gamma radi-
ation emitted from the earth’s surface to infer the concentration
of radio element isotopes such as uranium (U), thorium (Th), and
potassium (K).® The predictor maps of these features are shown
in Appendix A (Fig. A.15).

The final dataset is a two-class imbalanced dataset which contains
17 samples of known IOCG mineralized (positive) and 1.84x10° samples
of non-mineralized (negative) samples, with each sample having 20
different features from the aerogeophysical data.

3. Methodology

The aim of our work is to improve the performance of the proposed
ML techniques which are able to predict deposits and produce an
accurate MPM based on a highly imbalanced dataset. The methodology
implemented based on the following steps as shown in Fig. 2.

» Data preprocessing: The first step in the workflow involves
preparing data for modeling. This includes cleaning and trans-
forming the data to ensure it is clean, consistent, and suitable for
ML algorithms such as removing missing values and normaliza-
tion.

Cross-Validation Strategy: We use LOOCV, where each fold
corresponds to one deposit. Therefore, with 17 deposits in our
dataset, the cross-validation naturally involves 17 folds. This ap-
proach ensures rigorous evaluation of our models by maximizing
the use of available data while preventing data leakage between
training and testing sets. Additionally, for each training dataset,
we apply 4-fold SCV to assess the robustness of our models.

5 https://tupa.gtk.fi/paikkatieto/meta/aeromagnetic_raster_data_of_finland.
html

6 https://tupa.gtk.fi/paikkatieto/meta/aeroradiometric_raster_data_of_
finland.html

» Imbalanced data handling: Since the original dataset is highly
imbalanced, where the minority class (mineralized regions) is
significantly smaller than the majority class (non-mineralized re-
gions), it is crucial to address this imbalance to prevent the model
from overfitting to the majority class and neglecting the minority
class. For this purpose, we utilized SMOTE for oversampling
minority points and random undersampling techniques to create
a balanced dataset, as detailed in Sub- Section 3.1.

ML modeling: Based on the preprocessed and
imbalanced-handled data, supervised ML models are trained to
predict mineral occurrences (Sub- Section 3.2). We also per-
formed hyperparameter tuning, decision threshold adjusting to
optimize the performance of each algorithm.

Model evaluation and map generation: The performance of
each ML model is evaluated using appropriate metrics, such as ac-
curacy, F1 score, sensitivity and specificity, to assess their ability
to correctly identify mineral occurrences. In addition, we investi-
gate the effect of the number of oversampled and undersampled
data on ML’s performance. To evaluate the model’s performance
in the context of mineral exploration, we used prediction-area
and success-rate curves. Uncertainty estimation is shown using
the accuracy-rejection curve to assess model performance with
synthetic positive samples. Finally, classification maps are gen-
erated to classify each pixel as mineralized or non-mineralized.

3.1. Imbalanced data handling techniques

In this section, we describe the methods which is used in this paper
for addressing the challenge of imbalanced data in MPM. The class
imbalance happens when one class contains fewer samples (e.g. min-
eralized samples) than others (e.g. non-mineralized samples).

Random under-sampling (Kotsiantis and Pintelas, 2004) is a non-
heuristic method that removes samples from the majority class ran-
domly to balance class distribution. The major weakness of random
under-sampling is that this method may eliminate potentially valuable
data that could be crucial for the learning process (Kotsiantis et al.,
2006). Synthetic Minority Oversampling Technique (SMOTE) (Chawla
et al., 2002) is a common over-sampling methods in MPM (Prado et al.,
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Fig. 3. Data distribution using t-SNE (a) original imbalanced dataset, (b) with 5000 over-sampled known mineralized samples and 100,000 under-sampled non-mineralized samples

by applying SMOTE and random under-sampling techniques, respectively.

2020) which can create synthetic minority class data points by measur-
ing the similarity between data points based on distance metrics. It first
identifies k nearest neighbors for each minority class data point. Then,
it randomly selects one of these neighbors and generates a new syn-
thetic data point along the line segment connecting the minority class
data point and its randomly selected neighbor. The new synthetic data
point is assigned the minority class label. In this study, we employed
a hybrid method that incorporates both over-sampling and under-
sampling techniques to achieve a more balanced dataset. To visualize
the distribution of data across mineralized and non-mineralized sam-
ples before and after applying balancing methods, we plot the dataset
in reduced dimensions using t-SNE. Fig. 3(a) visualizes the original data
distribution and Fig. 3(b) an example after applying SMOTE to generate
balanced dataset. This visualization also demonstrates how the original
dataset is highly imbalanced and then how it is balanced with the
oversampled mineralized points and undersampled of non-mineralized
points.

3.2. Machine learning methods

In the following subsections, we will give brief introductions to the
machine learning methods used in this study.

3.2.1. Multi-layer perceptron (MLP)

MLP (Jiang et al., 2018) is a type of a feedforward artificial neural
network with a layered structure. It consists of an input layer, one or
more hidden layers, and an output layer. Each layer is made up of
interconnected nodes, or neurons, which use nonlinear activation func-
tions, that enable the network to learn complex patterns in the data.
MLP’s input layer receives the initial data, which then passes through
the hidden layers, where most of the computation takes place. Each
neuron in these layers processes the input by performing a weighted
sum followed by a nonlinear transformation. The weights and biases in
these neurons are adjusted during the training process using algorithms
like backpropagation, which effectively tunes the network to produce
the desired output.

One of the key strengths of MLPs is their ability to approximate
virtually any continuous function, given sufficient neurons in the hid-
den layers. This attribute, known as universal approximation capability,
makes MLPs highly versatile for a wide range of tasks, from simple
regression problems to complex classification tasks to identify patterns
in high-dimensional data. However, MLPs are prone to overfitting,
especially when the network has too many layers or neurons relative
to the amount of available training data. To counter this, techniques
such as dropout and regularization are often used. The selection of the
appropriate network architecture, including the number of layers and
the number of neurons in each layer is also a possible pitfall of MLP,
as they often require experimentation and validation against a held-out
dataset to find the optimal architecture.

3.2.2. Random Forest (RF)

RF (Genuer et al., 2008) is an ensemble learning method known
for its robustness and accuracy in various applications. RF can handle
large datasets with high dimensionality, while providing estimates of
feature importance. RF utilizes numerous decision trees during the
training phase, each of which is independently developed, with the final
output being determined by aggregating their individual predictions.
In classification tasks, the aggregation is typically done by taking the
mode of the classes predicted by each tree, ultimately allowing a
‘majority vote’ or the most prevalent result to decide the outcome.
In regression tasks, RF predicts an outcome based on the mean of
the predictions from all the trees, ensuring a balanced approach that
mitigates individual tree biases. Most recent advances include methods
in order to reduce overfitting and improve computational efficiency.

One of the benefits of RF is its good capability to process large
datasets, even those with high dimensionality, making it a viable choice
for scenarios where the data involves a vast number of features (Xu
et al., 2012). Additionally, RF provides insightful estimates of feature
importance, which is valuable for both predictive analytics, where
the goal is to forecast future outcomes, and descriptive tasks, which
aim to understand patterns within the data. By creating multiple trees
and using their collective decision, RF ensures that the model is not
overly complex and customized the specific details of the training
data, thereby enhancing its generalization capabilities and reducing
overfitting.

3.2.3. Decision tree (DT)

DT (Quinlan, 1986) is a non-linear predictive modeling tool or-
ganized as a tree, with nodes representing attribute tests, branching
corresponding to test results, and leaf nodes containing the decision
or conclusion. The root node represents the whole dataset, which is
subsequently divided into subgroups depending on the attribute values
that produce the greatest reduction in heterogeneity or impurity. This
process, known as recursive partitioning, continues until each leaf node
is pure (in classification) or additional splitting is neither conceivable
nor practicable (in regression).

One of the most appealing aspects of DTs is their interpretability
and simplicity. Unlike more complex models, DTs can be visualized
and understood easily, making them an excellent tool for decision-
making processes where the reasoning behind predictions needs to be
explained. DTs can be sensitive to small changes in the data, lead-
ing to different splitting paths. This instability is often mitigated by
ensemble methods like Random Forests, which incorporate multiple
DTs to increase robustness and accuracy. Despite these challenges, the
simplicity, interpretability, and versatility of DTs make them a valuable
tool in the arsenal of machine learning methodologies.
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ML Model Hyper-parameter Search space Optimal Hyper-parameter Value

MLP solver Ibfgs, sgd, adam adam
hidden_layer sizes [(2), (4), (8)] (16, 2)
learning_rate_init 0.001, 0.005, 0.01, 0.05, 0.1, 0.2 0.01

RF n_estimators 2,4, 8,16 8
max_depth 10, 20, 30, 50 50
min_samples_split 2,5 2
max_features auto, sqrt auto

DT criterion gini, entropy, log_loss entropy
splitter best, random random
max_depth 2,4,6,8 6

LR penalty 11,12 12
Inverse of Regularization Strength 0.001, 0.01, 0.1, 1, 10, 100 100
max_iter 1000, 2000, 3000 1000

3.2.4. Logistic regression (LR)

LR (Foster et al., 2018) is a statistical model used primarily for
binary classification tasks, categorizing data points into one of the two
groups based on the values of one or more independent variables.
The categorization is achieved through a logistic function, a special S-
shaped curve that transforms any input into a value between O and
1 (probability). One of the most important advantages of LR is its
interpretability. Unlike some black box-like models where the decision-
making can be ambiguous, LR provides clear insights into how each
predictor influences the probability of the outcome. This transparency
is a major reason why LR is so widely used in fields where understand-
ing the impact of variables is crucial, such as in medicine, where it
might be used to predict the likelihood of a patient having a particular
disease based on symptoms and test results, or in social sciences to
understand the factors influencing a particular social behavior.

LR is quite straightforward and less resource-intensive compared
with more complex alternatives, making it a practical choice for both
small and large-scale applications. Its method of handling probabilities
is direct and uncomplicated, which simplifies the process of model
training and prediction.

Regularization methods (Nusrat and Jang, 2018), such as L1 or L2
regularization, are one of the improvements that can incorporate to LR
by helping to prevent overfitting, i.e. when a model performs well on
training data but poorly on unseen data. By penalizing the magnitude
of the coefficients, regularization ensures that the model remains in
general domain and is resistant to the specifics of the training data,
enhancing its performance and reliability on more complex or varied
datasets.

4. Experimental setup
4.1. Model training

In order to evaluate the performance of ML models, improve model
generalizability and select optimal hyperparameters, we first used
LOOCV to divide the data into 17 folds. Each fold is used as a test
set for a different model, trained on the remaining folds. The model
performance metrics are estimated based on the test sets. Within each
training set from the outer loop, a second layer of cross-validation
(SCV) is conducted to optimize the model’s hyperparameters. This
includes tuning three specific parameters: the decision threshold, the
optimal rates for oversampling and undersampling, and the ML models
hyperparameters. The results of SCV are more reliable than the results
of traditional cross-validation because they are less likely to be affected
by data leakage (Wainer and Cawley, 2018)

In addition, during the inner loop, the data balancing methods
are applied to the training data to generate different numbers of
samples for the minority class. For each hyperparameter setting, the
imbalanced method is used to balance the class distribution in the
training set, and the resulting dataset is used to train the ML model. To

find the best model and evaluate its performance in cross-validation
(CV), we employed the geometric mean (G,,,,) as a loss function.
Unlike traditional classification loss functions, which primarily focus
on minimizing misclassifications, G,,,, considers the distance between
sample features. By taking into account both sensitivity (recall) and
specificity, G,,.,, provides a balanced evaluation metric that is robust
to class imbalance (Hastie et al., 2009).

Grean = \/Sensitivity X Specificity (@9)]
Sensitivity = _Tre 2
TP+ FN
TN
Specificity = ————— 3
pecificity TN+ FP 3)

where TP, FP, TN and FN indicate the total number of true positive,
false positive, true negative, and false negative pixels, respectively.

Table 2 lists the key ML parameters and their best values. The
parameter names at the table align with the standard parameter names
used in the Scikit-learn Python package.

4.2. Evaluation metrics

The common metrics for evaluating the trained ML models are
assumed including classification accuracy, sensitivity, specificity, F1-

score, ROC-AUC. The formula used are:
TN+TP

Accuracy = 4
TN+ FP+TP+FN

precision X Sensitivity

F1—score=2x — (€
precision + Sensitivity
Precision = _Irr 6)
TP+ FP

In this work, we used a variant of Fl-score to handle imbalanced
dataset which is called weighted F1-score. The weighted F1-score com-
putes the average Fl-score weighted by the number of true instances
for each class as follows:

Y, w; X Fl-score;
Z?:] w;
where n is the number of classes and w; is the weight assigned to class

i, typically equal to the proportion of true instances for class i in the
dataset. F1-score; is the F1-score for class i.

Weighted F1-score = (7)

5. Results and discussion
5.1. Comparison of ML methods
Table 3 presents the performance metrics from 4-fold cross valida-

tion on the test dataset for ML methods with and without an imbalanced
data handling method. This result demonstrates the superiority of
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Table 3
The classification performance metrics (%) from nested cross validation on the test dataset with and without imbalanced data handling.
Models MLP RF DT LR
Imbalanced Data Handling With Without With Without With Without With Without
Accuracy 97.13 90.90 88.34 99.99 89.35 99.20 79.29 78.23
Weighted F1-Score 98.52 92.40 93.69 99.99 91.55 99.60 84.75 80.18
Sensitivity 47.05 35.29 88.23 0.00 58.82 41.17 82.35 58.82
Specificity 97.13 90.90 88.34 99.99 89.35 99.20 79.29 78.23
. Mineralized =
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Fig. 4. The weighted Fl-score (%) for the training dataset based on different number of over-sampling mineralized samples N and under-sampling non-mineralized samples M

for the best model (MLP).

data augmentation-based framework. It is evident that in all models
without imbalanced data handling, the models become biased towards
the majority class. Our results show that models trained with aug-
mented data outperform those trained without augmentation across
all evaluated metrics. This highlights the effectiveness of our data
augmentation-based framework.

DT and LR show better sensitivity, which suggests that simpler
models have less capacity to become biased and overfitted on the
majority class. The results of the models with imbalanced data handling
indicate that the MLP model achieved the highest accuracy of 97.13%.
Nevertheless, the accuracy of the RF model remains sufficiently high for
classification purposes. Notably, its sensitivity is 41.17% points higher
than that of the MLP model, making it significantly more sensitive in
handling imbalanced data. Even with imbalanced data handling the
MLP and DT got biased towards the majority class.

5.2. Effectiveness of data balancing techniques

We evaluate the proposed ML models based on the different number
of over-sampling N and under-sampling M by using nested cross
validation as these parameters are crucial for achieving a balanced
representation of classes in order to avoid overfitting and underfitting.
Generating too few samples may not effectively capture the underlying
distribution of the minority class, while generating too many samples
may lead to overfitting or poor generalization.

Considering the overall robustness and classification accuracy of
the two ML models, MLP was chosen as the best model to generate
the result in Fig. 4. This result shows the weighted F1-scores which
is obtained by different values of N and M to determine the effect of
over and under-sampling on MLP models’ performance. We leverage the
logarithmic space to generate a range of values for both over-sampling
(N) and under-sampling (M).

Fig. 4 highlights the model’s performance with varying
over-sampling and under-sampling rates for generating the training
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Fig. 5. The P-A plots for each model: (a) MLP, (b) RF, (c) DT, and (d) LR.

dataset. Models with the highest F1 scores were trained with low min-
eralized over-sampling rates and high non-mineralized under-sampling
rates (bottom right of Fig. 4). Similarly, models with high mineralized
over-sampling rates and low non-mineralized under-sampling rates (top
left of Fig. 4) also achieved high F1 scores. This indicates that models
trained with imbalanced datasets, having a high ratio of mineralized to
non-mineralized samples, tend to overfit.

Conversely, models trained with over-sampling below 860 miner-
alized samples exhibited the lowest training F1 scores (bottom left of
Fig. 4). Some of these models had testing F1 scores below 98, indicating
that imbalanced datasets with low mineralized to non-mineralized
ratios tend to underfit. MLP model trained with balanced datasets,
having equal numbers of mineralized and non-mineralized samples
(highlighted diagonal of Fig. 4), shows F1 scores ranging from 92.2 to
100. The F1 scores for these models consistently increased with higher
over-sampling rates of the mineralized class and lower under-sampling
rates of the non-mineralized class, resulting in a greater total number of
training samples (from bottom left to top right of Fig. 4). This suggests
that models trained with balanced datasets tend to be more stable and
are less prone to overfitting or underfitting. This result for RF, DT, and
LR are also presented in Appendices Appendix B (Fig. B.16), C (C.17),
and D (Fig. D.18) respectively.

5.3. Predictive efficiency
To effectively evaluate the predictive performance of our models

in the context of mineral exploration, we utilized Prediction—Area (P-
A) plots and success-rate curves. The P-A plot (Yousefi and Carranza,

2015), and the success-rate curve (Chung and Fabbri, 1999), are widely
accepted methods for assessing the predictive power of spatial pre-
diction models. These tools are crucial for linking modeling results to
practical applications by focusing on predictive efficiency, specifically
the ability to capture more deposits within smaller target areas.

The P-A plot is used to visualize the relationship between the cu-
mulative percentage of predicted mineral deposits and the cumulative
percentage of the area. P-A plots for the proposed ML models are shown
in Fig. 5. For MLP model (Fig. 5(a)), we can see the prediction rate
(red line) is stable across all probabilities, indicating consistent predic-
tive accuracy. The area (blue) decreases sharply at a low probability,
showing that MLP effectively concentrates high-probability predictions
in a smaller area. RF Model (Fig. 5(b)) shows a moderate intersection
between prediction rate and area, suggesting it covers more area to
achieve similar deposit predictions compared to MLP, indicating a
dispersed prediction pattern. DT Model (Fig. 5(c))has a steep area
decline at higher probabilities with a significant drop in prediction rate
beyond the 0.4 threshold, implying effectiveness at higher probabilities
but limited coverage at lower ones. LR Model (Fig. 5(d)) quickly focuses
on very high-probability zones, as shown by the sharp area drop at low
probabilities. The high prediction rate across the curve indicates strong
accuracy in targeted high-probability areas.

The success-rate curves further complement the P-A plots by plot-
ting the cumulative percentage of correctly predicted deposits against
the cumulative percentage of the area, thereby providing a quantitative
measure of the model’s predictive performance. The success-rate curves
for all four models are depicted in Fig. 6. From the results, we can see
the RF model shows the highest efficiency, with its curve positioned
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Fig. 6. Success-rate curves for the machine learning models.

highest, indicating superior performance in identifying deposits over
smaller areas. The DT also performs robustly, though slightly below RF,
showcasing its capability to identify deposits effectively over moderate
areas. The MLP model follows, presenting a balanced identification
rate across the examined area, while LR is the least efficient among
the specific models, yet still performs better than random guessing,
depicted by the Random model’s baseline curve.

In conclusion, the P-A plots and success-rate curves provide a
comprehensive evaluation of the predictive efficiency of our models.
The MLP and RF models exhibit superior performance in identifying
mineralized areas within a smaller target region, thereby offering more
practical value for mineral exploration applications.
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5.4. Confusion matrix

To find more details about the performance of models for two
classes (mineralized and non-mineralized), we interpreted the con-
fusion matrices. The rows in confusion matrix represent the actual
class labels, and the columns represent the predicted class labels.
From confusion matrix, four outcomes of a classification results were
summarized including These terms can be defined in our application as
follows:

1. True Positive (TP): Pixels classified as “mineralized” that are
indeed part of a mineralized region in the ground truth (actual
positive instances).

2. False Positive (FP): Pixels classified as “mineralized” that are
actually part of a non-mineralized region in the ground truth
(incorrectly classified as positive instances).

3. True Negative (TN): Pixels classified as “non-mineralized” that
are indeed part of a non-mineralized region in the ground truth
(actual negative instances).

4. False Negative (FN): Pixels classified as “non-mineralized” that
are actually part of a mineralized region in the ground truth
(incorrectly classified as negative instances).

The result which is depicted in Fig. 7(a) shows that MLP can get the
maximum correct observations belongs to class “non-mineralized”. For
RF, as illustrated in Fig. 7(b), the highest correct observations belong
to the classes “mineralized” which is 88.24%.

5.5. Decision threshold

Thresholding allows model to fine-tune the classifier’s decision
boundary to better account for the class imbalance. Fig. 8(a) shows
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Fig. 7. The confusion matrix of (a) MLP, (b) RF, (c) DT, and (d) LR on the test dataset.
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Fig. 8. (a) ROC and (b) sensitivity-specificity curves of proposed models using test dataset based on different thresholds.
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Fig. 9. The accuracy-rejection curves of (a) MLP, (b) RF, (c¢) DT, and (d) LR.

ROC (Receiver Operating Characteristic) curves plotted for threshold
values, showing the trade-off between true positive rate (sensitivity)
and false positive rate as the number of samples generated varies. This
can help in assessing the impact of sampling on the model’s ability
to discriminate between classes for MPM (Nykénen et al., 2015). The
ROC curves show that the AUC value of the result obtained by MLP
is the highest followed by RF, LR, and DT with balanced data. In
addition, it shows that the best threshold value for all the 4 models.
Fig. 8(b) plots the sensitivity-specificity curve and consider adjusting
the decision threshold based on the trade-off between sensitivity and

10

sensitivity. Each color represents a different model, with the solid lines
indicating the sensitivity and the dashed lines the specificity at various
thresholds. MLP achieve high sensitivity without a significant loss in
specificity which highlights its robustness.

5.6. Uncertainty estimation
In this study, accuracy-rejection curves (Nadeem et al., 2009) with

total uncertainty were utilized to evaluate the performance of the
models under conditions of synthetic positive samples. Fig. 9 shows
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O TP O FN = Predicted occurence —J Predicted non-occurence

Fig. 10. Prospectivity mineral maps for (a) MLP, (b) RF, (c) DT, and (d) LR models. The occurrence sizes have been visually exaggerated to make them visible.

that all models achieved near-perfect accuracy at very low rejection
rates, highlighting the robustness of the predictions. The total uncer-
tainty, which encompasses both aleatoric and epistemic uncertainties,
remained significantly low across all models, even with the injection
of synthetic positives. For instance, in MLP, the total uncertainty is low
(0.24), indicating that the model has high confidence in its predictions.
In addition, the rejection rate is extremely low (0.029), suggesting that
very few predictions are rejected.

This outcome underscores the effectiveness of the uncertainty quan-
tification mechanisms embedded within our approach. The consistency
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of low uncertainty across various computational models validates the
reliability of our predictions and supports the decision-making process
in the exploration of mineral resources. By incorporating synthetic pos-
itives, our approach not only maintains high accuracy but also ensures
that the model’s integrity is not compromised, thereby bolstering the
confidence in the predictive capabilities of our framework.

5.7. Mineral prospectivity mapping

Fig. 10 showcases the mineral prospectivity maps produced by all
four models. For generating these maps, we utilized the entire dataset
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for training the models based on the optimal values of model hyper-
parameters, decision threshold, and the number of over-sampling and
under-sampling instances. We also visualize the 17 mineralized samples
on the maps and indicate TP and FN samples with different colors
to interpret how the ML models perform for MPM. To enhance the
interpretability of these occurrence points on the maps, their represen-
tation has been exaggerated. This deliberate visual adjustment ensures
that even on a broad geographical scale, where actual mineralized
sizes would be visually indiscernible, the analysis of model perfor-
mance remains straightforward. The color-coding effectively conveys
the accuracy of each model in spatially discriminating between zones
with high mineralization potential from less prospective areas, thereby
demonstrating the models’ utility in guiding exploratory endeavors in
geoscience.

Geological insights provided by experienced geologists confirm that
all four maps are geologically sensible, with predicted occurrences
aligning with potential mineralized sites based on the region’s geo-
physical characteristics, particularly magnetic anomalies. Maps A and
B are noted for their accuracy in prediction without an excess of
predicted sites, making them particularly valuable for field geologists.
Map A, in particular, demonstrates an impressive capacity to delineate
separate ore bodies within a single mineralized, a feat likely aided by
the magnetic data employed. Despite the general bias associated with
using aeromagnetic anomaly maps and their derivatives in modeling,
our methods have managed to produce meaningful results, as evidenced
in the geologically informed predictions across all maps. However, it is
recommended to use multiple points to represent the true spatial extent
of mineralized samples for future modeling to enhance the accuracy

and utility of these predictions.

6. Conclusion

This paper presents an innovative approach based on machine learn-
ing methods, including random forest (RF), dicision tree (DT), logistic
regression (LR), and multi-layer perceptron (MLP), to predict mineral
prospectivity in Lapland, Finland. The study utilizes multi-source geo-
information from a dataset with n, = 17 known mineralized and n =
1.84 X 10° non-mineralized. The data is so imbalanced and only there
is a few labeled data. To address this problem, we proposed different
approaches to generate balanced data before applying ML methods.
By systematically addressing class imbalances, incorporating a decision
threshold, and employing rigorous validation techniques, our training
methodology ensures the robustness and generalizability of machine
learning models for mineral prospectively mapping (see Fig. B.16). The
results demonstrate that the MLP model exhibits the best classification
performance with an accuracy of 97.13%. This high accuracy is com-
plemented by an impressive Fl-score of 98.52%, suggesting a robust
balance between precision and recall. The Random Forest RF model,
while trailing behind the MLP in terms of accuracy with an 88.34%
score, demonstrates exceptional performance in sensitivity, achieving
88.23%. This highlights the RF model’s strength in correctly identifying
positive cases.

What comes to the positive set itself, our experiments with affine

models based on subsets of positive samples indicate that each sample

12

Ore Geology Reviews 174 (2024) 106270

is useful contributor for model performance and the prediction would
benefit from having more positive samples. The paper also discusses the
challenges and considerations involved in applying these techniques to
real-world geophysical datasets. These challenges include the availabil-
ity and quality of data, the choice of appropriate evaluation metrics,
and the interpretation of model results.

The findings of the study demonstrate that innovative machine
learning algorithms can significantly enhance the predictive accuracy
of mineral prospectivity modeling and contribute to the identifica-
tion of undiscovered mineralization potential.g. In addition, this pa-
per provides an outlook on future research directions in this area,
including the development of novel techniques for handling com-
plex and heterogeneous geophysical data, and the exploration of ML
approaches for mineral prospectivity mapping (see Figs. C.17 and
D.18).
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Appendix A. Spatial data inputs used in modeling

See Figs. A.11-A.15.

Appendix B. Effect of balancing techniques on RF

See Fig. B.16.

Appendix C. Effect of balancing techniques on DT
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Appendix D. Effect of balancing techniques on LR

See Fig. D.18.
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Fig. A.11. Predictor maps of AEM features including (a) Aeroelectromagnetic Inphase components (b) Aeroelectromagnetic Quadrature components (c) Aeroelectromagnetic Apparent
resistivity (d) electromagnetic ratio.

13



F. Farahnakian et al Ore Geology Reviews 174 (2024) 106270

= Mineralized

(c) (d)

Fig. A.12. Predictor maps of Magnetic features including (a) DGRF65 Anomaly, (b) analytical Signal of magnetic anomaly, (c) tilt derivative of the magnetic field, and (d)
Pseudogravity derived from magnetism.

14



F. Farahnakian et al Ore Geology Reviews 174 (2024) 106270

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0

(a) (b)

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0

= Mineralized

(c) (d)

Fig. A.13. Predictor maps of Magnetic features for directional cosines of magnetic anomaly in directions (a) 45, (b) 90, (¢) 135, and (d) 180.
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Fig. A.14. Predictor maps of Magnetic features including (a) X, (b) Y, (¢) Z, and (d) Horizontal derivative of the tilt derivative.
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Fig. A.15. Predictor maps of Radiometric features gamma ray radioactivity of element including (a) K, (b) U, (c¢) Th, and (d) total Gamma ray radioactivity.
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Fig. B.16. The weighted Fl-score (%) for the training dataset based on different number of over-sampling N and under-sampling M for RF.
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Fig. C.17. The weighted Fl-score (%) for the training dataset based on different number of over-sampling N and under-sampling M for DT.
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Fig. D.18. The weighted F1-score (%) for the training dataset based on different number
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